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Abstract—This paper studies the effect of storage techniques for
transporting collected plant leaves from the field to the laboratory
for hyperspectral analysis. The strategy of collecting leaf samples in
the field for laboratory analysis is typically used when ground
truthing is needed in remote sensing studies. Results indicate that
the accuracy of hyperspectral measurements depends on a combi-
nation of storage technique (in a cooler or outside a cooler), time
elapsed between collecting leaf samples in the field and measuring in
the laboratory, and the plant species. A nonlinear model fitting
method is proposed to estimate the spectrum of decaying plant
leaves. This revealed that the reflectance of soybean leaves remained
within the normal range for 45 min when the leaves were stored in a
cooler, while soybean leaves stored outside a cooler remained within
the normal range for 30 min. However, cotton leaves stored in a
cooler decayed faster initially. Regardless of storage technique,
results indicate that up to a maximum of 30 min can elapse between
plant leaf sampling in the field and hyperspectral measurements in
the laboratory. This study focused on cotton and soybean leaves, but
the implication that time elapsing between sampling leaves and
measuring their spectrum should be limited as much as possible can
be applied to any study on other crop leaves. Results of the study also
provide a guideline for crop storage limits when analyzing by
laboratory hyperspectral sensing setting to improve the quality
and reliability of data for precision agriculture.

Index Terms—Ground truthing, hyperspectral imaging, leaf
sampling, remote sensing, spectral decay.

1. INTRODUCTION

RECISION agriculture involves controlling agricultural

inputs, such as water, fertilizer, herbicides, and pesticides,
at a subfield spatial resolution to optimize agricultural profits.
This means maximizing yield and minimizing production costs.
This is accomplished by determining the needs of the crops at a
spatial resolution that could be so finely defined that each plant
has its own prescription [1].

One of the tools used in gathering information for precision
agriculture is remote sensing. Remote sensing refers to gathering
information about objects without physically touching them. It is
often accomplished by using sensors like optical cameras or radar
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systems that are mounted on airborne or space borne platforms.
One type of optical sensor that has been used in many applica-
tions is the hyperspectral camera. Hyperspectral sensors work by
subdividing the optical part of the electromagnetic spectrum
including the ultraviolet, visible, and infrared, into a large
number of narrow wavelength bands. The advantage of this
sensor is that it is capable of photo spectroscopy. Theoretically,
hyperspectral cameras should be able to identify different types
of plant stress, such as drought, nitrogen, and pest, and they
should be capable of distinguishing different kinds of plants [2].
Often, hyperspectral cameras do not meet these theoretical
expectations due to atmospheric interference [3]. Thus, it is
often helpful to position the hyperspectral sensor closer to the
crops, which reduces the amount of atmosphere the signal must
pass through. At the extreme, portable hyperspectral sensors can
be used on the ground to obtain hyperspectral data on the plants
one at a time. These sensors are still passive, and therefore rely on
solar radiation, which passes through the atmosphere on the way
to the ground. Thus, the radiation interacts with the atmosphere
less than the case where the sensor is airborne or spaceborne.
When the atmosphere is dynamic, it may be difficult to calibrate
the sensor and collect data before the atmospheric conditions
change or require the use of additional equipment, and it may be
advantageous to confine the hyperspectral sensor to a laboratory
and collect leaves from the crop field, which are then transported
to the laboratory for data measurement. The measured data can
then be used to analyze the plants, or refine the analysis of a
remotely sensed dataset that encompasses a larger area. The
effectiveness of using a laboratory confined sensor depends on
how much elapsed time is allowable between the time leaves are
collected and reflectance is measured. The leaf samples change
gradually after they are collected. The time that can safely elapse
between collecting the leaves and measuring their reflectance
depends on the rate of decay. Assuming that processing of
collected leaves in the laboratory cannot be expedited, the decay
rate will dictate how many leaves can be measured since the
accuracy of the measurements worsen the longer the leaf remains
in storage.

It is common practice to excise leaves from plants and then use
them to estimate the canopy reflectance of the plant. Some
researchers refrigerate leaf samples after collecting them for
transport to the laboratory, but a few do not. Generally, it seems
to be common practice to measure the leaf reflectance as soon as
possible after collecting them. le Maire et al. [4] conducted a
study where the chlorophyll content of deciduous tree leaves was
estimated. They transported the detached leaves to laboratory
and indicated that the leaves were kept cold between sampling
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and laboratory measurements. In another study by Carter and
Spiering [5], the researchers also removed and refrigerated leaves
from trees to transport them to the laboratory, where the hyper-
spectral reflectance was measured to estimate chlorophyll. Zhang
et al. [6] also looked at the hyperspectral reflectance of tree
leaves, but indicated that the leaves were stored at 0 °C while
being transported to the laboratory. Foster ef al. [7] also stored
samples at 0°C, and their samples were switchgrass cultivars.
Zhao et al. [8] did not refrigerate the leaves sampled from the
field. Instead, the leaves were measured in the field immediately
after they were removed. One of the problems with studies that
collect leaves for processing in a laboratory is that spectra from
sampled leaves may not characterize the spectra of the same
leaves on the plant because the leaves decay during transport and
storage. This can lead to erroneous conclusions because the data
may not be representative of the original plant.

There have been some studies looking into the effects of
excising leaves on their spectral reflectance. Foley et al. con-
ducted one such study on the leaves of five different tropical
rainforest trees [9]. The leaves were from the common guava
(Psidium guajava), purple guava (Psidium littorale), weeping fig
(Ficus benjamina), floss silk (Chorisia speciosa), and coffee
(Coffea Arabica). In this study, the authors attempted to deter-
mine the efficacy of preserving the leaf spectra by wrapping
moist gauze around the petiole of leaves and placing them in a
plastic bag. Though they use a relatively small sample size (one
leaf for treatment and one leaf for control for each tree species),
the study showed that the leaves from each species behaved very
differently after being excised. A second study was conducted by
Summy et al. [10]. In their study, the foliage of giant reed
(Arundo donax) was examined. Here, the authors tested many
different storage combinations involving different types of bags
and refrigeration. Their method involved collecting spectral
radiation measurements of particular wavelength bands at 0,
24, 48, 72, and 96 h after excision, and the threshold for
significant difference was determined by the lack of overlap
between 95% confidence intervals on the sample means. While
the method is valid and well described in the text, it is a little
misleading. Assuming the variance remains approximately con-
stant after excision, this method translates into a difference
between the two sample means of about 2.717 standard devia-
tions, which is better than a 99% confidence level. In a two class
classification problem, one normally distributed feature with this
description would yield an area under the receiver operating
characteristic curve [11] of about 0.974, a Bhattacharyya dis-
tance [12] of about 0.929, and an overall classification accuracy
of about 92% when using a maximum likelihood classifier [13].
Given that raw wavelength bands comparable to such features are
rarely encountered in difficult classification problems, the confi-
dence interval is likely too wide. Furthermore, the study con-
ducted by Summy ef al. does not take into account what is
happening in the interval between excision and 24 h after
excision, which is likely when scientists would collect spectral
measurements during an experiment.

Given the fact that the behavior of leaves after excision from
the plant is dependent on the species of the plant, it is critical that
studies on leaves from common agricultural plants be conducted
to improve research techniques in agricultural science. One such
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study dealing with cotton (Gossypium hirsutum L.) was
conducted by Thomasson and Sui [14]. Their study attempted
to determine if cotton leaves stored in a cooler (with ice) change
within 14 h after being collected from the plant. Spectra of the
five plants were measured only four times during the 14-h
interval. This study assumed a linear relationship between
reflectance and time. The conclusion was that the reflectance is
not significantly correlated with storage time. However, due to
the small number of leaves sampled, the small number of
temporal measurements, and the fact that there may not be a
linear relationship between spectral band reflectance values and
time, it is possible that relationships were missed.

The overall goal of the study is to evaluate the efficacy of the
strategy of collecting field leaf samples for analysis with a
laboratory confined hyperspectral sensor. The specific objectives
of the study are as follows.

1) Compare the spectral effects of storing leaf samples in a

cooler and outside a cooler for two different species.

2) Evaluate accuracy of modeling the spectral decay using a

linear model and a nonlinear model.

II. MATERIALS AND METHODS
A. Experimental Design and Implementation

In July 2011, leaves from field grown cotton (Gossypium
hirsutum L.) and soybean (Glycine max (L.) Merr.) plants were
sampled at the United States Department of Agriculture, Agri-
cultural Research Service (ARS), Stoneville, MS, USA. A total
of 10 leaves of cotton and soybean were sampled for hyperspec-
tral imaging. The cotton plants were in the seven- to eight-leaf
stage, and the soybeans were in the seven- to eight-trifoliate leaf
stage. For imaging one of the twin leaves for each cotton plant
and the lowermost trifoliate leaves for each soybean plant were
selected. Five of the cotton and soybean leaves were stored in
paper bags inside a cooler, and the other five were stored in paper
bags outside the cooler. The temperature inside the cooler for leaf
storage stayed at about 17°C with the help of a layer of ice on the
bottom of the cooler (the ice was isolated from the leaf samples
with several layers of masking paper to raise the temperature
above 0 °C and stabilize the humidity) and the temperature of the
laboratory room where the leaves outside the cooler were placed
was kept at about 22°C. These temperatures were monitored
using thermometers placed near the leaves in storage. The leaves
were imaged at 15 min after they were collected, then again at 1,
2,3,4,5, 6, and 24 h after collecting them. Each time the leaves
were imaged, they were placed back into their original storage
method, inside or outside cooler, for subsequent imaging.

B. Leaf Image Acquisition

The image data were collected using a push broom hyper-
spectral imaging system [15] with an effective spectral range
from 400 to 900 nm. The camera is a 14-bit PCO1600 CCD
(charge-coupled device) high-resolution camera (Cooke Corpo-
ration, Romulus, MI, USA) that was integrated with an
ImSpector VI0E spectrograph (Spectral Imaging Ltd., Oulu,
Finland) with a 30 pm entrance slit, and a 23-mm Schneider
lens. The PCO1600 camera has a CCD with resolution of
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1600 x 1200 pixels and is thermoelectrically cooled. The
camera was at a range of less than 1 m, which produce images
with pixels smaller than 1 x 1 mm?. Image data transfer from
the camera to the computer was through an IEEE 1394 “firewire”
link. In order to illuminate the target area in the indoor environ-
ment, two mr16 tungsten halogen bulbs with dichroic reflectors
were mounted with the sensor on an adjustable camera stand. The
lamps were fitted with diffusion and color-balancing filters in
order to resolve specular reflectance and to simulate natural
lighting.

C. Image Processing and Data Analysis

In addition to the imagery, white reference and dark current
measurements were acquired. The reflectance (I?) images were
computed using the formula below on each pixel in the image

_ DN:(\) - DC(V) "
DNg(\) — DC(A)

R()\)

The digital numbers for the target and white reference are
represented by DNy and DNp, respectively, and the dark
current is DC'.

The reflectance images of the leaves were initially segmented
by thresholding the normalized difference vegetation index
(NDVI) [16] computed for each pixel in the hyperspectral
reflectance image. Since the background was made of felt (dark,
nonvegetative fabric), this produced a rough segmentation that
still mislabeled some leaf pixels as background. The segmenta-
tion was then manually cleaned up. Manual clean up involved
visually comparing segmentations to the corresponding images
of'the leaves and correcting mislabeled pixels. If the correct label
for a pixel was unclear, the pixel was labeled as background.
After segmentation, the leaf pixels were averaged together to
produce the reflectance spectral curve for the leaf.

The analysis started with normalizing the reflectance curves to
correct the data for variations in lighting. The reflectance curves
were divided by the value at 450 nm to correct for variations in
light intensity during reflectance measurements [14]. After the
leaf reflectances were normalized, the normalized reflectance
with respect to time was fit to both the linear models

NR(t) = c1 + ot (2)
and an exponential model

NR(t) = ¢ + cpe™ (3)

where N R represents normalized reflectance; ¢;, ¢o, and c3 are
the models’ coefficients; and ¢ represents time. Exponential
models of this form have been used for decades to model physical
phenomenon such as nuclear and chemical decay, and the
discharging of capacitors because it is the form of a solution to
a first order linear differential equation [17]. Thus, it is a logical
choice for modeling the decay of plant leaves in the short term.
After the model parameters were chosen, both the mean squared
error and an F-test [ 18] were computed to determine the suitabil-
ity of the model for the data.

The models were used to estimate the amount of time required
for each band to drift outside the normal range. Since there were
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no measurements of hyperspectral signatures for leaves still
attached to the plant, the normal range was defined based on
the values for the measurements taken very close to the time
leaves were still attached to the plants. Thus the normal range was
the value at 15 min plus or minus two standard deviations, which
includes about 95% of all the plants assuming they take on a
Gaussian distribution. When a band drifts outside the normal
range, it moves into a range that is taken up by only 2.5% of the
plants, and thus would be considered an outlier even if it were an
accurate characterization of the leaf. The time required for bands
to drift outside the normal range was estimated based on the
model fit to each band by computing the intersection between the
threshold values and the model function. Since the model was a
monotonic function, only one threshold was crossed at a time
greater than 15 min. Estimated times required to cross the
threshold for all the bands were plotted with respect to wave-
length. Additionally, plots were generated that show the number
of bands outside the normal range with respect to time.

In order to estimate the amount of change of reflectance within
a certain time, the rate of change was computed using the
following formulas

R)\(tQ) — R/\(tl)
to — 11

A= (4)

and

Rate =

A
x 100. 5
Ry(th) ®)
The spectral reflectance associated with a particular wave-
length is indicated by R, (¢). The functions and scripts used in
this study were written in MATLAB (MathWorks, Inc., Natick,
MA, USA).

III. RESULTS AND DISCUSSION

Figs. 1 and 2 illustrate the mean normalized reflectance for
cotton and soybean leaves. As the figures show, the spectral
signatures maintain the same general shape with small variations
that accumulate as time elapses. The data analysis indicates that
many of these variations are significant enough to affect classi-
fication in nontrivial problems. This means leaves excised from
plants may not characterize leaves still attached to the plant. It is
important to consider this if the spectra measured in laboratory
conditions with excised leaves are intended to be used in aiding
remote sensing tasks, such as training examples for classification
or pure signatures for pixel unmixing.

Fig. 3 illustrates examples of bands and model fits. The figure
shows how the mean reflectance at each band drifts away from
the mean at the first observation as time elapses after excision. It
indicates that leaves measured quickly after excision are able to
characterize the plant more accurately. In general, the data from
the first 6 h conformed well to the models, but often the 24-h data
would not fit any monotonic model function because the trend
reverses direction at some point after 6 h. The observation that the
change in spectral bands follows a different pattern after 24 h is
not surprising because leaves are very complex biological sys-
tems, and contain many different substances that probably decay
at different rates. It is possible the changes in the spectrum are
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Fig. 1. Mean normalized reflectance signatures (n = 5) for cotton after various storage intervals. The plants in (a) were stored inside a cooler, while the plants in
(b) were stored in a room outside the cooler. The signatures were normalized by dividing by the reflectance value at 450 nm.

Fig. 2. Mean normalized reflectance signatures (n = 5) for soybeans after various storage intervals. The plants in (a) were stored inside a cooler, while the plants in
(b) were stored in a room outside the cooler. The signatures were normalized by dividing by the reflectance value at 450 nm.

dominated in the first few hours by the decay of substances and
structures that decay quickly, while the decay after 6 h is
dominated by substances that are more persistent. In the cases
where the 24-h data could not be successfully modeled by either a
linear or exponential function, the 24-h data was ignored when
choosing model parameters. In such cases, the model was only
fitted on the data for the first 6 h. Since the exponential model had
a lower squared error almost universally, the linear model was
dropped from the rest of the analysis because it did not fit the data
as well as the exponential model.

After the model was chosen, it was statistically justified using
an F-test for each band. The results of this test are shown in Fig. 4.
As shown, no bands failed at the 2.5% significance level. This
means that the exponential model is accurate for all the spectral
bands for both cotton and soybean leaves.

Fig. 5(a) presents the estimated time for cotton to drift outside
its normal range in each wavelength band. Fig. 5(b) shows
the estimated time for soybean spectral bands to drift outside
the normal range. The cumulative number of bands outside the
normal range for cotton and soybeans is shown in Fig. 6. As
Fig. 5 shows, the cotton stored in the cooler remains more stable
in the infrared portion of the spectrum, but it is less stable in the
visible part of the spectrum. The cumulative plot (Fig. 6) shows
that the cotton stored outside the cooler has fewer bands outside
the normal range for the first hour and 30 min, and then afterward,
the cotton in the cooler has fewer bands outside the normal range.
There was a little effect on the stability of the reflectance caused
by storage method for the soybean leaves.

The advantage of storing samples in a cooler for hyperspectral
analysis depends on the kind of plant, wavelength of interest, and
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Fig. 3. Examples of reflectance band change plotted with the linear (dotted line) and exponential (solid line) models. The dashed lines represent the 20 normal interval
around the 15-min mean. (a) and (b) are cotton leaves at the 474 nm band, with (a) stored in the cooler and (b) stored in the room outside the cooler. (¢) and (d) are soybean
leaves at the 507 nm band, with (c) stored in the cooler and (d) stored in the room outside the cooler. Also note that both bands happen to be in regions where the
normalized reflectance is close to 1.0, and other bands have values consistent with Figs. 1 and 2.

the length of storage. In the long term, a slight advantage was
observed for the plants stored in a cooler, but at that point, the
advantage may be meaningless because there is so much change
that has already occurred. In the short term, there was no
significant difference between storing soybean leaves in a cooler
or outside a cooler, but for the cotton leaves, the cooler was
advantageous when the storage time was greater than 1 h and
30 min, or if the near infrared range was the most important part
of the spectrum for later analysis methods. For the cotton in
general, it was actually better not to store the leaves in a cooler if
the storage time was less than 1 h and 30 min indicating cooling
not to be advantageous.

In all cases, changes were observed very soon after the
experiment began. The observed change that occurred between
15 min and 1 h often remained within the normal range, but
the change was consistent with the trend line established over
the first 6 h, which implies that changes can be extrapolated to the
interval prior to 15 min. However, it is not clear how accurate the
extrapolation is, or how close to the instant the leaf is collected

the extrapolation remains valid. Nevertheless, it can be expected
that reflectance is changing very shortly after the leaf is removed
from the plant. A second point of this study is apparent when the
implication of the threshold of significance is considered. This
paper considered spectral measurements to be within the normal
range as long as the sample mean at the particular time were
within two standard deviations of the sample mean at 15 min after
excision. In a classification problem, if a feature has a normal
distribution, the same standard deviation for both classes, and the
means for each class separated by two standard deviations, that
single feature will have an area under the receiver operating
characteristic of about 0.922, a Bhattacharyya distance of about
0.500, and result in an overall classification accuracy of about
84% when a maximum likelihood classifier is used. Since it is
rare to encounter raw hyperspectral bands with similar separa-
bility in difficult remote sensing problems, it is likely that even
the two standard deviation threshold is too wide because the
means of other classes are possibly closer than two standard
deviations. Though it is naive to assume only one hyperspectral
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Fig.4. Results of F-tests on model fits. (a) Test for cotton stored in a cooler. (b) Test for cotton stored outside the cooler in a room. (c) Test for soybean stored in a cooler.
(d) Test for soybean stored outside the cooler in a room.

Fig. 5. Plot of time required for spectral bands to drift outside the normal range for cotton leaves (a) and soybean leaves (b). The blue and red lines represent cotton
leaves stored inside a cooler and in the room, and outside the cooler, respectively.

band will be used in a study, if a classification problem is being  excision and spectral measurement if conclusions are to be
studied where there are no hyperspectral bands with such good extrapolated to plant canopies growing outside the laboratory.
separability, even less time should be allowed to elapse between A third point about this study is that it says nothing about how the
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Fig. 6. Estimated percent of bands outside the normal range with respect to time for cotton leaves (a) and soybeans leaves (b). The blue and red lines represent the cotton

leaves stored in a cooler and in the room, and outside the cooler, respectively.

Fig. 7. Average rate of change for the first hour after collecting cotton leaves (a) and soybean leaves (b).

leaves would vary with respect to time if they were not removed,
which may be as significant as the variation observed after the
leaves were removed. It is clear that leaves that were removed
were exposed to a different environment than the leaves that were
left on the plant. Since the leaves respond to the environment they
are exposed to, it is likely that changes observed from collected
leaves are not representative of leaves left on the plant. If a
scientist wants to design an experiment where leaves are collected
from plants and sent to a laboratory where their hyprespectral
signatures are measured, steps should be taken to limit the lag
time between collection and measurement.

In order to estimate the amount of change in spectral reflec-
tance within the first hour for experiment design purposes, the
average rate of change was estimated for each band (Fig. 7).
The rate of change is an estimate of change per hour based on
the change that occurs between 15 min and 1 h. It was computed
using the formulas (4) and (5). In the computation, t; = 15 min

and to = 1 h. The information can be used to roughly estimate
the amount of error in the measurement if a constant rate of
change over the 1-h period is assumed. One unfortunate, but not
unexpected, result of this study was that the leaves of different
plants (cotton and soybeans in this case) changed at different
rates. This indicates that the calculation can be only applied to
cotton or soybeans, and cannot be applied in general to all plants.
Based on the results from these two plants, it seems to be safe to
allow up to a maximum of 30 min to elapse before measuring the
leaf spectrum. Waiting any longer may be risky considering that
the soybean leaves showed 1.5% of the bands outside the normal
range at 30 min, climbing to about 25% by 45 min. A final
consideration is that measuring all the spectra from one group of
plants before moving on to the next group may not be advised if
the goal is to discern differences between the two groups. If the
groups are completely identical, this strategy may detect differ-
ences based simply on the fact that one group was stored longer.
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This analysis does not implicate any biochemical or physio-
logical response as being responsible for the observed changes in
leaf reflectance, but it is known that water content influences the
near infrared portion of the spectrum and chlorophyll concen-
tration influences the visible portion of the spectrum [19].

IV. CONCLUSION

The results of this study suggest that storage time has an
important effect on the spectrum measured in the laboratory, and
that storage technique has a lesser effect. A very important
consideration is the species of plant. However, the effect caused
by plant species cannot be easily predicted. It is thus best to
control storage time to remain inside a range that is good for most
species. It is recommended that the duration samples are in
storage before analysis be limited as much as possible. If samples
are in storage for 30 min or less, then it is not necessary to store
leaves in a cooler. However, if the leaves are stored for several
hours, then it is probably best to store the leaves in a cooler even
though results suggest that storage for several hours is not
advisable regardless of the storage method. For both cotton and
soybeans, if the leaves are stored for 30 min or less, there should
be little spectral change. The effects observed in this study were
likely not observed in previous studies because linear models
were used. Typically, the exponential model more closely ap-
proximated the data, and thus it was a superior model for the
spectrum of sampled leaf decay.

There are many scientists conducting studies where leaves are
sampled and analyzed in the lab with the expectation of provid-
ing input for remote sensing studies [4]—[7]. It is well known that
atmospheric conditions influence the accuracy of any remote
sensing study. This research shows that the time leaves remain in
storage and transport to the laboratory confined hyperspectral
sensor has an impact on the ability of the resulting laboratory
measured spectra to characterize remotely sensed spectra. Thus,
additional error can be introduced if samples are not measured in
a timely fashion. Scientists endeavoring to use a laboratory-
confined hyperspectral sensor for determining plant leaf reflec-
tance spectra should consider the impact of the time elapsed
between leaf collection and measurement.

REFERENCES

[1] H.Yaoetal.,“Usinghyperspectral data in precision farming applications,” in
Hyperspectral Remote Sensing of Vegetation, P. S. Thenkabail, J. G. Lyon,
and A. Huete, Eds. Boca Raton, FL, USA: CRE Press, 2012, pp. 591-607.

[2] J. Penulas and I. Filella, “Visible and near-infrared reflectance techniques
for diagnosing plant physiological status,” Trends Plant Sci., vol. 3, pp. 151—
156, 1998.

[3] M. T. Eismann, Hyperspectral Remote Sensing. Bellingham, WA, USA:
SPIE, 2012.

[4] G. le Maire, C. Francois, and E. Dufrene, “Towards universal broad leaf
chlorophyll indices using PROSPECT simulated database and hyperspec-
tral reflectance measurements,” Remote Sens. Environ., vol. 89, no. 1,
pp. 1-28, 2004.

[5] G. A. Carter and B. A. Spiering, “Optical properties of intact leaves for
estimating chlorophyll concentration,” J. Environ. Quality, vol. 31, no. 5,
pp. 1424-1432, 2002.

[6] Y. Zhang, J. M. Chen, and S. C. Thomas, “Retrieving seasonal variation
in chlorophyll content of overstory and understory sugar maple leaves
from leaf-level hyperspectral data,” Can. J. Remote Sens., vol. 33, no. 5,
pp. 406415, 2007.

2569

[7]1 A. J. Foster, V. G. Kakani, J. Ge, and J. Mosali, “Discrimination of
switchgrass cultivars and nitrogen treatments using pigment profiles and
hyperspectral leaf reflectance data,” Remote Sens., vol. 4, pp. 2576-2594,
2012.

[8] D.Zhao, K. R.Reddy, V. G. Kakani, J. J. Read, and G. A. Cater, “Corn (Zea
mays L.) growth, leaf pigment concentration, photosynthesis and leaf
hyperspectral reflectance properties as affected by nitrogen supply,” Plant
Soil, vol. 257, no. 1, pp. 205217, 2013.

[9] S.Foley, B. Rivard, G. A. Sanchez-Azofeifa, and J. Calvo, “Foliar spectral
properties following leaf clipping and implications for handling techni-
ques,” Remote Sens. Environ., vol. 103, pp. 265275, 2006.

[10] K.R.Summy et al., “Effects of leaf excision and sample storage methods on
spectral reflectance by foliage of giant reed Arundo Donax,” Subtrop. Plant
Sci., vol. 63, pp. 54-64, 2011.

[11] D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics.
New York, NY, USA: Wiley, 1966.

[12] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by probability distributions,” Bull. Calcutta Math. Soc.,
vol. 35, pp. 99-109, 1943.

[13] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York, NY, USA: Wiley, 2001.

[14] J. A. Thomasson and R. Sui, “Cotton leaf reflectance changes after removal
from the plant,” J. Cotton Sci., vol. 13, no. 3, pp. 206-211, 2009.

[15] H. Yao, Y. Huang, Z. Hruska, S. J. Thomson, and K. N. Reddy, “Using
vegetation index and modified derivative for early detection of
soybean plant injury from glyphosate,” Comput. Electron. Agric., vol. 89,
pp. 145-157, 2012.

[16] J. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Deering, “Monitoring
vegetation systems in the great plains with ERTS,” in Proc. 3rd ERTS-1
Symp. NASA Goddard, NASA SP-351, 1974, pp. 309-317.

[17] M. Golomb and M. Shanks, Elements of Ordinary Differential Equations,
2nd ed. New York, NY, USA: McGraw-Hill, 1965.

[18] D.C. Montgomery and G. C. Runger, Applied Statistics and Probability for
Engineers, 3rd ed. New York, NY, USA: Wiley, 2003.

[19] E. B. Knipling, “Physical and physiological basis for the reflectance of
visible and near-infrared radiation from vegetation,” Remote Sens. Environ.,
vol. 1, no. 3, pp. 155-159, 1970.

Matthew A. Lee (M’04) received the B.S., M.S., and
Ph.D. degrees in computer engineering from Missis-
sippi State University, Starkville, MS, USA, in 2004,
2007, and 2012, respectively.

He worked as a Post Doctorial Agricultural
Research Engineer with the United States Department
of Agriculture, Agricultural Research Service,
Stoneville, MS, USA. In February 2014, he began
working as a Post Doctorial Researcher with Electrical
and Computer Engineering Department, Mississippi
State University. His research interests include digital

image processing and remote sensing.

Yanbo Huang received the B.E. degree in industrial
automation from Beijing University of Science and
Technology, Beijing, China, in 1983, and the M.E.
degree in industrial automation from Chinese Academy
of Mechanics and Electronics Sciences, Beijing,
China, in 1986, and the Ph.D. degree in agricultural
engineering from Texas A&M University, College

Station, TX, USA, in 1995.
Currently, he is a Senior Research Agricultural
Engineer with United Department of Agriculture
(USDA), Agricultural Research Service (ARS),
Stoneville, MS, USA. He is an Adjunct Professor with Texas A&M University,
Mississippi State University, and Delta State University, and Guest Research
Fellow with Chinese Academy of Agricultural Science. Currently, he is the Panel
Manager of USDA National Institute of Food and Agriculture (NIFA) Small
Business Innovation Research (SBIR) Engineering Panel. He had 4 years of
research experience at Beijing Research Institute of Automation for Mechanics
and Electronics Industries, Beijing, China, and 12 years of full-time research and
extension experience at Texas A&M University in food processing unit operation
modeling, optimization and process control, food quality quantization, and safety
system simulation. In 2007, he started to work for USDA-ARS. He has authored
or coauthored over 140 scientific publications, 60 of which are peer-reviewed
journal articles. His research interests include aerial application (manned and
unmanned), remote sensing for precision application (space-borne, airborne, and



2570

ground truthing), soft computing and decision support for precision agriculture,
spatial statistics for remote sensing data analysis, and image processing and
process automation.

Dr. Huang is an Editor-in-Chief of International Journal and Agricultural
Science and Technology (IJAST), Section Editor of International Journal of
Agricultural and Biological Engineering (IJABE), and Associate Editor of
Transactions of the American Society of Agricultural and Biological Engineers
(ASABE).

Haibo Yao (M’04) received the Ph.D. degree in
agricultural engineering from the University of Illinois
at Urbana-Champaign, Urbana-Champaign, IL, USA,
in 2004.

Currently, he is an Associate Research Professor
with the Geosystems Research Institute, Mississippi
State University, Starkville, MS, USA. He has over 60
research publications and two U.S. patents. His
research interests include remote sensing and engi-
neering solutions for agricultural, biomedical, food
safety, environmental applications, GPS and GIS,

algorithm development, instrumentation, as well as hyperspectral image analysis.

Steven J. Thomson received the Ph.D. degree in
agricultural engineering from the University of
Florida, Gainesville, FL, USA, in 1990.

Currently, he is the Lead Scientist on a research
project involving spray application and efficacy, spray
drift mitigation, variable rate aerial application of crop
protection materials, and remote sensing. He has over
100 research publications.

Dr. Thomson is currently an Editor of the
Research Journal Transactions of the ASABE. As
Faculty Member at Virginia Tech, he received the

Alpha Epsilon Award for outstanding research and extension in 1995 and was a
top ten finalist out of 280 engineering faculty for a W.E. Wine Award for
excellence in teaching. He has received Best Manuscript and Best Reviewer
Awards, and has been invited to speak at many forums including Keynote for the
First Asian Conference on Precision Agriculture in Toyohashi, Japan.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014

Lori Mann Bruce (S’90-M’96-SM’01) received the

B.S.E. degree in electrical and computer engineering

from the University of Alabama, Huntsville, AL,

USA, in 1991, the Master degree from the Georgia

Institute of Technology, Atlanta, GA, USA, in 1992,

and the Ph.D. degree in electrical and computer

engineering from the University of Alabama, in 1996.

Currently, she is a Giles Distinguished Professor

of Electrical and Computer Engineering and the

Associate Vice President for academic affairs and the

Dean of Graduate School at Mississippi State Univer-

sity, Starkville, MS, USA. Prior to her current position, she has served as
Associate Dean for Research and Graduate Studies in the Bagley College of
Engineering, Associate Director of the Geosystems Research Institute, and the
Professor of Electrical and Computer Engineering. As a Faculty Member, her
research endeavors have been focused on advanced digital signal processing
methodologies for exploitation of high-dimensional datasets, with particular
emphasis on hyperspectral remote sensing. She has served as the Principal
Investigator (PI) or coPI for more than 20 funded research grants and contracts,
totaling approximately $20 million from federal agencies. As a Faculty Member,
she has taught 45 sections of 17 different engineering courses and has successfully
advised, as Major Professor or Thesis/Dissertation Committee Member, 75 Ph.D.,
and Master’s students. Her research has resulted in over 130 refereed publica-
tions. Her research in hyperspectral remote sensing for agricultural and environ-
mental applications has been presented to audiences in more than 10 countries.



